in the Ni (Holian \& Marsh, 1970; Coghi, Mangia, Nardelli \& Pelizzi, 1969; Ward, Caughlan \& Smith, 1971) and Cu (Mathew \& Kunchur, 1970) complexes.
The bond distances $\mathrm{N}\left(s p^{2}\right)-\mathrm{C}\left(s p^{2}\right)$ of the ligand molecule are not all equal; the larger ones [1.367 (2)1.381 (2) \AA] involve the N atoms of the NH groups, the medium ones $[1.326$ (2)-1.338 (3) \AA] involve the N atoms of the NH_{2} groups and the shorter ones [1.303 (3)-1.310 (2) \AA § include the N atoms coordinating with Mn . All these values indicate that the π-electron cloud is delocalized and spread over the six-membered rings which are stabilized by resonance. All the independent nitrate ions are planar and have normal $\mathrm{N}-\mathrm{O}$ distances ranging from $1 \cdot 224$ (2) to 1.266 (3) \AA.
The packing of the molecule viewed down the c axis is shown in Fig. 2. The molecules are held together by normal van der Waals contacts and by a network of hydrogen bonds. The axial water mol-
ecules of the square pyramid are engaged in hydrogen bonding with the nitrate ions and all three nitrate ions are hydrogen bonded to the complex ion.

References

Coghi, L., Mangia, A., Nardelli, M. \& Pellizzi, G. (1969). Ric. Sci. 39, 438-441.
Coghn, L. \& Pelizzi, G. (1975). Acta Cryst. B31, 131-134.
Hollan, B. L. \& Marsh, R. E. (1970). Acta Cryst. B26, 10491058.

Kunchur, N. R. (1968). Nature (London), 217, 539-541.
Mathew, M. \& Kunchur, N. R. (1970). Acta Cryst. B26, 2054-2062.
Nardelli, M. (1983). Comput. Chem. 7, 95-98.
Ray, M. M. \& Ray, P. (1958). J. Indian Chem. Soc. 35, 595-600.
Ray, P. \& Ghosh, S. P. (1943). J. Indian Chem. Soc. 20, 291-297.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Simms, M. L., Atwood, J. L. \& Zatko, D. A. (1973). J. Chem. Soc. Chem. Commun. pp. 46-47.
Ward, D. L., Caughlan, C. N. \& Smith, G. D. (1971). Acta Cryst. B27, 1541-1549.

Structure of Two Polymorphic Forms of Phenothiazine Tetrachloroantimonate

By Kozo Kozawa and Tokiko Uchida
Department of Industrial and Engineering Chemistry, Faculty of Science and Technology, Science University of Tokyo, Noda, Chiba 278, Japan

(Received 5 July 1989; accepted 4 September 1989)

Abstract

The crystal structures of two polymorphic forms of phenothiazine tetrachloroantimonate, triclinic (I) and monoclinic (II), were determined. $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{NS} . \mathrm{SbCl}_{4}, M_{r}=462 \cdot 8$. (I) Triclinic, $P \overline{1}, a=$ 12.149 (10),$\quad b=13.023$ (9), $\quad c=11.750$ (8) $\AA, \quad \alpha=$ $108.57(5), \quad \beta=107.78$ (6), $\quad \gamma=104.65(6)^{\circ}, \quad V=$ 1547 (2) $\AA^{3}, Z=4, D_{x}=1.99, D_{m}=1.99 \mathrm{Mg} \mathrm{m}^{-3}$, $\lambda($ Мо $K \alpha)=0.71073 \AA, \quad \mu=2.61 \mathrm{~mm}^{-1}, \quad F(000)=$ $892, T=293 \mathrm{~K}, R=0.062$ for 4184 observed reflections. (II) Monoclinic, $P 2_{1} / c, a=12 \cdot 154$ (6), $b=$ 18.116 (3), $\quad c=7.517$ (2) $\AA, \quad \beta=108.29$ (2) ${ }^{\circ}, \quad V=$ 1571.4 (8) $\AA^{3}, Z=4, D_{x}=1.96, D_{m}=2.00 \mathrm{Mg} \mathrm{m}^{-3}$, $\lambda($ Mo $K \alpha)=0.71073 \AA, \quad \mu=2.62 \mathrm{~mm}^{-1}, \quad F(000)=$ 892, $T=293 \mathrm{~K}, R=0.061$ for 1502 observed reflections. All the phenothiazine (PT) molecules exist as cation radicals and are nearly planar. Each Sb atom is coordinated by six Cl atoms to form a distorted octahedral configuration. In form (I), both cation radicals and anions form separate tetramers, while in form (II) they each make up one-dimensional infinite columns.

0108-2701/90/061006-05\$03.00

Introduction. Phenothiazine (PT) is known to have multiple oxidation states : cation radical, cation, and dication (Billon, 1962; Shine \& Mach, 1965; Iida, 1971). The neutral PT molecule is known to be folded along the $\mathrm{S} \cdots \mathrm{N}$ axis with a dihedral angle of 153.3 (monoclinic; Bell, Blount, Briscoe \& Freeman, 1968) and 158.5° (orthorhombic; McDowell, 1976). In several structural works on the 'weak' chargetransfer complexes, the PT molecule has been found to have a similar structure to that of the neutral species except for the dihedral angles cited above. Crystals of several kinds of PT complexes were obtained from PT and the strong Lewis acids SbCl_{3} or SbCl_{5}. In the $\mathrm{PT}-\mathrm{SbCl}_{6}$ crystals, PT was found to exist as a cation radical, and to be almost planar with a dihedral angle of $175 \cdot 8^{\circ}$ (Uchida, Ito \& Kozawa, 1983). It was concluded that PT is easily changed to a relatively stable cation radical in the complex with strong electron acceptors, and that it adopts a conjugated planar system including the central thiazine ring. This paper concerns the refined
structure of two polymorphic $\mathrm{PT}-\mathrm{SbCl}_{4}$ crystals, the preliminary results of which appeared in our previous communication giving the physical properties (Uchida, Seki, Ito, Nakano, Hoshizaki \& Kozawa, 1986).

Experimental. Single crystals of (I) and (II) were obtained from the same 1,2-dichloroethane (DCE) solution of PT and SbCl_{3} in the molar ratio 1:2. Crystals of (II) were also obtained from a DCE solution of PT and SbCl_{5} in the molar ratio 2:1. Single crystals of both (I) and (II) were black plates and the dimensions of the crystals used were $0.5 \times$ $0.1 \times 0.03 \mathrm{~mm}$ (I) and $0.15 \times 0.12 \times 0.08 \mathrm{~mm}$ (II). D_{m} was measured by flotation in an aqueous solution of $\mathrm{K}_{2} \mathrm{HgI}_{4}$ for (I) and in a bromoform/chloroform solution for (II). Rigaku AFC-5 four-circle diffractometer, $\theta / 2 \theta$ data collection, scan width ($1+$ $0.5 \tan \theta)^{\circ}$ in θ, scan rate $4^{\circ} \mathrm{min}^{-1}$ in $\theta, 2 \theta_{\text {max }}=55$ (I) and $60^{\circ}(\mathrm{II})$, range of $h k l: 0$ to $16,-17$ to $17,-16$ to 16 (I) and 0 to 17,0 to $25,-10$ to 9 (II); standard reflections $\overline{5} 23, \overline{2} 1 \overline{6}, 17 \overline{6}$ (I) and $\overline{4} \overline{5} \overline{1}, \overline{4} 5 \overline{1}, \overline{1} 53$ (II), monitored every 100 measurements, intensity variations in $F 2 \%$ (I) and 10\% (II); corrected for linear decay only for (II). For (I) 7332 reflections measured, 7094 unique, $R_{\text {int }}=0.02,4184$ observed with $F_{o}>$ $3 \sigma(F)$; for (II), 4936 reflections measured, 4595 unique, $R_{\text {int }}=0.021,1502$ observed with $F_{o}>3 \sigma(F)$; lattice parameters determined from 24 reflections ($27.3<2 \theta<30 \cdot 3^{\circ}$) for (I) and 20 reflections ($17.7<$ $2 \theta<22.3^{\circ}$) for (II); correction for Lorentz and polarization effects, no correction for absorption for (I) and (II).

Structure solved by heavy-atom method for (I) and by direct methods using MULTAN84 (Main, Germain \& Woolfson, 1984) for (II). Block-diagonal least-squares refinements were employed. The quantity minimized was $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$, and $w=1$ for both (I) and (II). Initial positions of H atoms were calculated. Parameters refined: atomic coordinates for all atoms, anisotropic temperature factors for non-H atoms; isotropic temperature factors for H atoms were fixed at $B_{\text {iso }}=4.0 \AA^{2}$. (I): $R=0.061, w R$ $=0.074, S=3.82,(\Delta / \sigma)_{\max }=0.15$ for non-H atoms, $\Delta \rho_{\text {min }}=-2.8, \Delta \rho_{\text {max }}=2.3 \mathrm{e} \AA^{-3}$ near the Sb atom. (II): $R=0.060, w R=0.069, S=4.54,(\Delta / \sigma)_{\text {max }}=$ 0.15 for non-H atoms, $\Delta \rho_{\text {min }}=-2 \cdot 2, \Delta \rho_{\max }=$ 1.0 e \AA^{-3} near the Sb atom.

Scattering factors and anomalous-dispersion factors for Sb, Cl and S were taken from International Tables for X-ray Crystallography (1974). The calculations were carried out using a PANAFACOM U-1200II computer with the Rigaku RASA-5P package and a HITAC M-680H at the Computer Centre of the University of Tokyo with the UNICS (Sakurai, 1967) program system.

Table 1. Fractional coordinates and equivalent isotropic thermal parameters with e.s.d.'s in parentheses

$$
B_{e q}=(4 / 3) \sum_{i} \sum_{j} \beta_{i j} \mathbf{a}_{j} \cdot \mathbf{a} .
$$

	x	y	z	$B_{\text {eq }}$
(I)				
Sb (1)	0.0368 (1)	0.2071 (1)	0.0918 (1)	2.77 (3)
$\mathrm{Sb}(2)$	0.3518 (1)	$0 \cdot 1040$ (1)	0.1648 (1)	3.24 (3)
$\mathrm{Cl}(1)$	-0.1580 (4)	0.1567 (4)	0.1218 (4)	$4 \cdot 5$ (2)
$\mathrm{Cl}(2)$	-0.0286 (4)	0.3213 (4)	-0.0196 (4)	4.3 (2)
$\mathrm{Cl}(3)$	0.0980 (4)	0.0144 (4)	0.1803 (4)	4.2 (2)
$\mathrm{Cl}(4)$	$0 \cdot 1466$ (4)	0.3781 (4)	0.3035 (4)	4.9 (2)
$\mathrm{Cl}(5)$	0.4281 (5)	0.2659 (4)	0.3739 (4)	$5 \cdot 1$ (2)
$\mathrm{Cl}(6)$	0.4158 (4)	-0.0167 (4)	0.2667 (5)	5.7 (2)
$\mathrm{Cl}(7)$	0.2643 (4)	0.2646 (4)	0.0478 (3)	3.9 (1)
$\mathrm{Cl}(8)$	0.5436 (4)	$0 \cdot 1660$ (4)	0.1410 (4)	$5 \cdot 3$ (2)
$\mathrm{S}(A)$	0.0608 (4)	0.2117 (4)	0.4733 (4)	4.1 (2)
$\mathrm{N}(A)$	$0 \cdot 0023$ (10)	$0 \cdot 1211$ (9)	$0 \cdot 6696$ (10)	3.0 (4)
$\mathrm{C}(1 A)$	-0.0799 (13)	$0 \cdot 1622$ (11)	$0 \cdot 6076$ (11)	3.0 (5)
$\mathrm{C}(2 A)$	-0.1854 (14)	0.1572 (13)	0.6342 (13)	$3 \cdot 9$ (5)
$\mathrm{C}(3 A)$	-0.2707 (15)	0.1967 (14)	0.5736 (14)	$4 \cdot 2$ (6)
$\mathrm{C}(4 A)$	-0.2513 (16)	$0 \cdot 2412$ (14)	0.4816 (14)	4.5 (6)
C(5A)	-0.1507 (16)	0.2453 (14)	0.4560 (14)	4.2 (6)
$\mathrm{C}(6, A)$	-0.0636 (13)	0.2058 (11)	$0 \cdot 5139$ (11)	3.0 (5)
$\mathrm{C}(7 A)$	0.1445 (13)	0.1530 (11)	0.5640 (12)	$3 \cdot 2(5)$
$\mathrm{C}(8 \mathrm{~A})$	$0 \cdot 2515$ (13)	0.1482 (13)	0.5495 (14)	4.0 (5)
$\mathrm{C}(9 A)$	0.3235 (14)	$0 \cdot 1021$ (13)	0.6213 (15)	4.1 (6)
$\mathrm{C}(10 \mathrm{~A})$	$0 \cdot 2859$ (14)	0.0645 (13)	0.7092 (14)	3.9 (6)
$\mathrm{C}(11 A)$	0.1819 (14)	0.0702 (12)	0.7220 (13)	$3 \cdot 7$ (5)
$\mathrm{C}(12 \mathrm{~A})$	0.1076 (13)	$0 \cdot 1165$ (11)	0.6535 (12)	3.0 (4)
S(B)	0.5677 (4)	0.5128 (4)	0.3021 (4)	4.4 (2)
$N(B)$	0.6522 (10)	0.6250 (9)	0.1339 (10)	$3 \cdot 1$ (4)
$\mathrm{C}(1 B)$	0.7277 (12)	0.5766 (10)	$0 \cdot 1901$ (12)	2.8 (4)
$\mathrm{C}(2 B)$	0.8376 (14)	$0 \cdot 5811$ (12)	0.1725 (14)	3.6 (5)
$C(3 B)$	0.9139 (14)	$0 \cdot 5340$ (13)	$0 \cdot 2280$ (14)	4.0 (5)
C(4B)	0.8857 (16)	0.4819 (14)	$0 \cdot 3087$ (15)	4.6 (6)
C(5B)	0.7818 (15)	0.4775 (13)	$0 \cdot 3284$ (15)	$4 \cdot 1$ (6)
C(6B)	0.7006 (13)	0.5243 (11)	0.2739 (12)	$3 \cdot 2$ (5)
$C(7 B)$	0.4941 (13)	0.5774 (13)	02146 (13)	$3 \cdot 5$ (5)
$\mathrm{C}(8 B)$	$0 \cdot 3810$ (15)	0.5796 (14)	0.2166 (15)	4.3 (6)
$\mathrm{C}(9 B)$	0.3188 (15)	0.6314 (15)	0.1497 (16)	$5 \cdot 0$ (7)
$\mathrm{C}(10 \mathrm{~B})$	0.3661 (15)	$0 \cdot 6811$ (14)	0.0763 (14)	4.3 (6)
$C(11 B)$	0.4779 (14)	0.6804 (12)	0.0748 (13)	3.7 (5)
$C(12 B)$	0.5432 (12)	0.6265 (11)	0.1396 (12)	3.0 (5)
(II)				
Sb	0.2738 (1)	$0 \cdot 1902$ (1)	0.3675 (2)	2.72 (2)
$\mathrm{Cl}(1)$	0.1456 (4)	0.0996 (3)	0.1842 (7)	4.0 (1)
Cl(2)	0.1265 (4)	$0 \cdot 1953$ (3)	0.5852 (6)	$3 \cdot 8$ (1)
$\mathrm{Cl}(3)$	0.3924 (4)	$0 \cdot 1009$ (3)	0.5784 (8)	4.7 (2)
$\mathrm{Cl}(4)$	0.4024 (4)	0.1808 (3)	0.1625 (7)	$4 \cdot 2$ (1)
S	0.6339 (4)	0.2084 (3)	-0.0253 (7)	3.8 (1)
N	0.8802 (10)	0.1981 (8)	0.2660 (18)	2.7 (3)
C(1)	0.8186 (14)	0.1345 (9)	0.2038 (23)	2.8 (5)
C(2)	0.8772 (17)	0.0668 (12)	0.2724 (28)	4.4 (6)
C(3)	0.8202 (21)	-0.0008 (12)	0.2219 (30)	4.9 (7)
C(4)	0.7113 (15)	-0.0022 (12)	$0 \cdot 0932$ (27)	$4 \cdot 1$ (6)
C(5)	0.6511 (18)	0.0630 (12)	0.0211 (28)	4.5 (7)
C(6)	0.7046 (14)	0.1296 (10)	0.0740 (23)	$2 \cdot 9$ (5)
C(7)	0.7229 (12)	0.2796 (9)	0.0824 (19)	$2 \cdot 0$ (4)
C(8)	0.6816 (13)	0.3509 (11)	0.0401 (25)	$3 \cdot 4$ (5)
C(9)	0.7529 (15)	0.4094 (11)	0.1258 (27)	3.8 (6)
$\mathrm{C}(10)$	0.8647 (19)	0.3976 (12)	0.2539 (31)	4.9 (7)
C(11)	0.9030 (18)	0.3282 (10)	0.2942 (28)	$4 \cdot 1$ (6)
C(12)	0.8370 (13)	0.2665 (9)	0.2135 (22)	$2 \cdot 3$ (4)

Discussion. Final atomic positional parameters of (I) and (II) are listed in Table 1^{*} and the atomic numbering and conformations of anions are shown in Fig. 1. An asymmetric unit of (I) contains two chemical formula units of the components, whose

[^0]two PT moieties are denoted by A and B, respectively.

The bond lengths and angles of three PT moieties are given in Table 2. There is no significant difference between corresponding bond lengths and angles in (IA) and (IB), and in (II), although their standard deviations are rather large. All three PT molecules are characterized by the following three features. (i) The $\mathrm{S}-\mathrm{C}$ and $\mathrm{N}-\mathrm{C}$ bond lengths are shorter than the corresponding values in the neutral molecule, which are 1.77 and $1.41 \AA$ in the monoclinic crystal (M) (Bell, Blount, Briscoe \& Freeman, 1968) and 1.76 and $1.40 \AA$ in the orthorhombic crystal (O) (McDowell, 1976), respectively. (ii) The $\mathrm{C}-\mathrm{S}-\mathrm{C}$ angles are larger than those of the neutral PT molecule, which are $99.6(M)$ and $100.9^{\circ}(O)$. (iii) The dihedral angles between the planes of the benzene moieties are 178.7 ($\mathrm{I} A$), 178.1 ($\mathrm{I} B$) and 176.2° (II); hence the PT moieties are nearly planar while the neutral PT molecules have folded conformations with dihedral angles of $153 \cdot 3(M)$ and $158 \cdot 5^{\circ}(O)$. These characteristics observed for (I) and (II) are very similar to those in $\mathrm{PT}-\mathrm{SbCl}_{6}$ (Uchida, Ito \& Kozawa, 1983), in which PT was proved spectroscopically to exist as a cation radical. In the previous communication, we proposed that $\mathrm{PT}(\mathrm{I} A)$ and PT(IB) were in different electronic states according

(a)

(b)

(c)

Fig. 1. Numbering scheme of (a) PT common to I $A, \mathrm{I} B$ and II, (b) SbCl_{4} in (I) and (c) SbCl_{4} in (II).

Table 2. Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ of the three phenothiazine molecules ($\mathrm{I} A, \mathrm{I} B$ and II)

	(I) Triclinic		(II) Monoclinic
	A	B	
$\mathrm{s}-\mathrm{C}(6)$	1.71 (2)	1.73 (2)	1.71 (2)
$\mathrm{S}-\mathrm{C}(7)$	1.73 (2)	1.71 (2)	1.72 (2)
$\mathrm{N}-\mathrm{C}(1)$	1.37 (2)	1.37 (2)	1.37 (2)
$\mathrm{N}-\mathrm{C}(12)$	1.36 (2)	1.35 (2)	1.36 (2)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.40 (2)	1.40 (2)	$1 \cdot 43$ (3)
$\mathrm{C}(1)-\mathrm{C}(6)$	1.43 (2)	1.43 (2)	1.43 (3)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.38 (3)	$1 \cdot 35$ (2)	$1 \cdot 40$ (3)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.43 (3)	1.40 (3)	1.37 (3)
$\mathrm{C}(4)-\mathrm{C}(5)$	1.34 (3)	1.34 (3)	1.41 (3)
$\mathrm{C}(5)-\mathrm{C}(6)$	1.38 (2)	1.39 (2)	1.37 (3)
$\mathrm{C}(7)-\mathrm{C}(8)$	$1 \cdot 38$ (2)	1.39 (3)	1.39 (3)
C(7)-C(12)	1.43 (2)	1.42 (2)	$1 \cdot 45$ (2)
$\mathrm{C}(8)-\mathrm{C}(9)$	1.40 (2)	$1 \cdot 37$ (3)	1.39 (3)
$\mathrm{C}(9)-\mathrm{C}(10)$	1.42 (3)	1.40 (3)	1.41 (3)
$\mathrm{C}(10)-\mathrm{C}(11)$	1.34 (2)	1.37 (3)	1.34 (3)
$\mathrm{C}(11)-\mathrm{C}(12)$	1.40 (2)	1.40 (2)	$1 \cdot 40$ (3)
$\mathrm{C}(6)-\mathrm{S}-\mathrm{C}(7)$	104.8 (8)	104.4 (8)	105.4 (8)
$\mathrm{C}(1)-\mathrm{N}-\mathrm{C}(12)$	127 (1)	128 (1)	123 (1)
$\mathrm{N}-\mathrm{C}(1)-\mathrm{C}(2)$	118 (1)	121 (1)	116 (2)
$\mathrm{N}-\mathrm{C}(1)-\mathrm{C}(6)$	122 (1)	121 (1)	126 (2)
${ }^{\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)}$	119 (1)	118 (1)	117 (2)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	120 (2)	122 (2)	120 (2)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	119 (2)	120 (2)	120 (2)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	120 (2)	120 (2)	122 (2)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	122 (2)	123 (2)	119 (2)
$\mathrm{S}-\mathrm{C}(6)-\mathrm{C}(1)$	122 (1)	122 (1)	120 (1)
$\mathrm{S}-\mathrm{C}(6)-\mathrm{C}(5)$	119 (1)	120 (1)	119 (1)
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	119 (1)	118 (1)	122 (2)
$\mathrm{S}-\mathrm{C}(7)-\mathrm{C}(8)$	117 (1)	118 (1)	118 (1)
$\mathrm{S}-\mathrm{C}(7)-\mathrm{C}(12)$	122 (1)	123 (1)	122 (1)
C(8)-C(7)-C(12)	122 (1)	120 (2)	121 (2)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	119 (2)	120 (2)	118 (2)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	119 (2)	121 (2)	122 (2)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	121 (2)	119 (2)	119 (2)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	122 (2)	122 (2)	123 (2)
$\mathrm{N}-\mathrm{C}(12)-\mathrm{C}(7)$	122 (1)	121 (1)	123 (1)
$\mathrm{N}-\mathrm{C}(12)-\mathrm{C}(11)$	120 (1)	120 (1)	119 (2)
$\mathrm{C}(7)-\mathrm{C}(12)-\mathrm{C}(11)$	117 (1)	118 (1)	117 (2)

to the bond lengths and angles within the thiazine rings (Uchida, Seki, Ito, Nakano, Hoshizaki \& Kozawa, 1986). However, the results of the present refinement show no significant differences between the PT moieties of IA and IB.

The SbCl_{4}^{-}ions constitute polyanions; they form segregated tetramers in (I) and infinite chains in (II). Each Sb atom in both (I) and (II) is surrounded by six Cl atoms forming a distorted octahedral configuration with $\mathrm{Cl}-\mathrm{Sb}-\mathrm{Cl}$ angles in the range 79.3$104 \cdot 1^{\circ}$ in (I) and $80 \cdot 6-102 \cdot 0^{\circ}$ in (II). The $\mathrm{Sb}-\mathrm{Cl}$ bond lengths in the anions are given in Table 3. The terminal bond lengths are in the range 2.380-2.423 \AA in (I) and 2.382-2.403 \AA in (II). The bridging $\mathrm{Sb}-\mathrm{Cl}$ bond lengths about those Cl atoms with rectangular twofold coordination are in the range 2:455-3-499 \AA in (I) and 2.522-3.263 \AA in (II), and those for the threefold coordinated Cl atoms are in the range 3.093-3.172 \AA in (I). These bond lengths are comparable with the values of other SbCl_{4} moieties reported to date (Porter \& Jacobson, 1970; Ensinger, Schwarz \& Schmidt, 1982; Lipka, 1980; Lipka \& Mootz, 1978; Trinh-Toan \& Dahl, 1976).
The crystal structure of (I) is shown in Fig. 2. Both PT and SbCl_{4} moieties exist as centrosymmetric tetramers. Two independent PT moieties are nearly

Table 3. The $\mathrm{Sb}-\mathrm{Cl}$ bond lengths (\AA) in (I) and (II)

(I)			
$\mathrm{Sb}(1)-\mathrm{Cl}(1)$	$2 \cdot 455$ (5)	$\mathrm{Sb}(2)-\mathrm{Cl}(3)$	3.093 (5)
$\mathrm{Sb}(1)-\mathrm{Cl}(2)$	$2 \cdot 400$ (5)	$\mathrm{Sb}(2)-\mathrm{Cl}(5)$	$2 \cdot 380$ (6)
$\mathrm{Sb}(1)-\mathrm{Cl}(3)$	$3 \cdot 172$ (5)	$\mathrm{Sb}(2)-\mathrm{Cl}(6)$	2.399 (6)
$\mathrm{Sb}(1)-\mathrm{Cl}(4)$	2.423 (5)	$\mathrm{Sb}(2)-\mathrm{Cl}(7)$	3.075 (5)
$\mathrm{Sb}(1)-\mathrm{Cl}(7)$	2.922 (5)	$\mathrm{Sb}(2)-\mathrm{Cl}(8)$	$2 \cdot 398$ (6)
$\mathrm{Sb}(1)-\mathrm{Cl}\left(3^{\prime}\right)$	3.125 (5)	$\mathrm{Sb}(2)-\mathrm{Cl}\left(1^{\prime}\right)$	3.499 (5)
(II)			
$\mathrm{Sb}-\mathrm{Cl}(1)$	2.382 (5)	$\mathrm{Sb}-\mathrm{Cl}(4)$	2.522 (6)
$\mathrm{Sb}-\mathrm{Cl}(2)$	2.780 (5)	$\mathrm{Sb}-\mathrm{Cl}\left(2^{\text {ii }}\right.$)	$3 \cdot 104$ (5)
$\mathrm{Sb}-\mathrm{Cl}(3)$	2.403 (6)	$\mathrm{Sb}-\mathrm{Cl}\left(4^{\prime \prime \prime}\right)$	$3 \cdot 263$ (6)

Symmetry codes: (i) $-x,-y,-z$; (ii) $x, \frac{1}{2}-y, \frac{1}{2}+z$; (iii) $x, \frac{1}{2}-y,-\frac{1}{2}+z$.
planar as mentioned above and overlap in the order $B A A B$. The mean interplanar distances in the region of overlap are $3 \cdot 34 \AA$ between A and $A^{\prime}(-x,-y$, $1-z$) (N side overlap) and $3 \cdot 30 \AA$ between A and B (S side overlap). These values are comparable to that of graphite $(3.35 \AA)$ and indicate the existence of a rather strong interaction within a tetramer. Although the inter-tetramer interaction is considered to be very small because of a minute amount of molecular overlap between B and $B^{\prime \prime}(1-x, 1-y,-z)$, the short contact of $C(2 B)$ and $C\left(10 B^{\prime \prime}\right)[3 \cdot 36(3) \AA]$ suggests that there is still a weak interaction between tetramers.

In the tetramer of SbCl_{4}^{-}, the four Sb atoms are individually coordinated by six Cl atoms, and form edge-sharing octahedra. The tetramer of SbCl_{4}^{-}has been reported in $\mathrm{Et}_{4} \mathrm{~N}^{+} . \mathrm{SbCl}_{4}^{-}$(Ensinger, Schwarz \& Schmidt, 1982) and $\left[\mathrm{Fe}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})_{2} \mathrm{Cl}_{4}\left(\mathrm{SbCl}_{3}\right)_{4}\right.$ (Trinth-Toan \& Dahl, 1976), which also have a cubane-like structure. A similar cubane-like structure was also found in TeCl_{4} (Buss \& Krebs, 1971). The SbCl_{4}^{-}tetramer in (I), however, has a different structure. The octahedron of $\mathrm{Sb}(1)$ shares three edges with neighbouring octahedra and that of $\mathrm{Sb}(2)$ shares two edges (see Fig. 1). There are two kinds of Cl coordination, i.e. twofold and threefold coordinated Cl as mentioned above. However, each octahedron in the tetramers of the other structures reported to date shares its three edges with the neighbouring three octahedra; so all the bridge Cl atoms are threefold coordinated. Although a non-cubane-like condensed tetramer structure of SbBr_{4} has recently been reported in tetrakis(2-amino-1,3,4-thiadiazolium)$\mathrm{Sb}_{4} \mathrm{Br}_{16}$ (Antolini, Benedetti, Fabretti \& Giusti, 1988) as another type of tetramer, it is also different from the structure of (I).

The crystal structure of (II) is shown in Fig. 3. PT and SbCl_{4} moieties form infinite stacks and chains, respectively, elongated along the c axis. The PT moieties are nearly planar and overlap in a face-toface manner. The mean interplanar distance in the region of overlap is $3.47 \AA$ with almost constant spacing. This spacing, which is comparable to the van der Waals distance for neutral aromatic com-
pounds, is intermediate in value between those of the intra- and inter-dimeric cation radical pair in chlor-promazine- CuCl_{4} (3.38 and $3.57 \AA$ respectively) (Obata, Kawazura \& Miyamae, 1984).

An octahedron of SbCl_{4}^{-}in (II) shares two cis edges with two other neighbouring octahedra, and a skew infinite chain is formed in a zigzag manner. Such an infinite chain of SbCl_{4}^{-}moieties is also reported in pyridinium- SbCl_{4} (Porter \& Jacobson, 1970) and some other metal tetrahalides (Wells, 1984), but is different from those in anilinium- SbCl_{4} (Lipka, 1980) and diphenylammonium- SbCl_{4} (Lipka \& Mootz, 1978), and these three structures are different from each other.
The electrical resistivity of a single crystal of (II) shows little anisotropy ($\rho_{300 \mathrm{~K}, \mid \mathrm{cc}}=2 \times 10^{3} \Omega \mathrm{~m}$, $\rho_{300 K, \| \mathrm{b}}=1 \times 10^{5} \Omega \mathrm{~m}$) (Uchida, Seki, Ito, Nakano, Hoshizaki \& Kozawa, 1986). The $\rho_{\| \mathrm{c}}$ value is not as small as expected for a one-dimensional structure,

Fig. 2. Projection of the crystal structure of (I) along a.

Fig. 3. Projection of the crystal structure of (II) along b.
because all the PT moieties exist as cation radicals possessing unit charge, and the mean interplanar distances are somewhat large compared with that of graphite ($3 \cdot 35 \AA$). The polarized absorption spectrum parallel to the c axis of a single crystal of (II) shows the characteristic peaks of the PT cation radical, and it also shows that the PT moieties have some mutual interaction, since there is a broad band around 1000 nm which one may assign to the charge-transfer band between PT cation radicals (Uchida, Seki, Ito, Nakano, Hoshizaki \& Kozawa, 1986).

The authors wish to thank Mrs C. K. Nakano, Mr Y. Niijima, Mr K. Oguri and Mr R. Koizumi for their technical assistance. This work was partially supported by Grant-in-Aid for Scientific Research No. 60540296 from the Ministry of Education, Science and Culture.

References

Antolin, L., Benedetti, A., Fabretti, A. C. \& Giusti, A. (1988). J. Chem. Soc. Dalton Trans. pp. 2501-2503.

Bell, J. D., Blount, J. F., Briscoe, O. V. \& Freeman, h. C. (1968). J. Chem. Soc. Chem. Commun. pp. 1656-1657.

Blllon, J.-P. (1962). Ann. Chim. (Paris), pp. 183-206.

Buss, B. \& Krebs, B. (1971). Inorg. Chem. 10, 2795-2800.
Ensinger, U., Schwarz, W. \& Schmidt, A. (1982). Z. Naturforsch. Teil B, 37, 1584-1589.
IIma, Y. (1971). Bull. Chem. Soc. Jpn, 44, 663-667.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
LIPKA, A. (1980). Z. Anorg. Allg. Chem. 469, 218-228.
Lipka, A. \& Mootz, D. (1978). Z. Anorg. Allg. Chem. 440, 231-236.
MCDowell, J. J. H. (1976). Acta Cryst. B32, 5-10.
Main, P., Germain, G. \& Woolfson, M. M. (1984). mULTAN84. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Obata, A., Kawazura, H. \& Miyamae, H. (1984). Acta Cryst. C40, 45-48.
Porter, S. K. \& Jacobson, R. A. (1970). J. Chem. Soc. A, pp. 1356-1359.
Sakurai, T. (1967). Editor. Universal Crystallographic Computation Program System. The Crystallographic Society of Japan, Tokyo, Japan.
Shine, H. J. \& Mach, E. (1965). J. Org. Chem. 30, 2130-2139.
Trinh-Toan \& Dahl, L. F. (1976). Inorg. Chem. 15, 2953-2959.
Uchida, T., Ito, M. \& Kozawa, K. (1983). Bull. Chem. Soc. Jpn, 56, 577-582.
Uchida, T., Seki, H., Ito, M., Nakano, C. K. Hoshizaki, T. \& Kozawa, K. (1986). Chem. Lett. pp. 999-1002.
Wells, A. F. (1984). Structural Inorganic Chemistry, 5th ed. pp. 424-427. Oxford: Clarendon Press.

Acta Cryst. (1990). C46, 1010-1013

Ten-Vertex Metallaborane Chemistry. Structure of 3-($\left.\left.\mathrm{OC}_{\mathbf{2}} \mathbf{H}_{\mathbf{5}}\right) \mathbf{- 4 , 9 - (} \mathbf{P P h}_{\mathbf{3}}\right)_{\mathbf{2}^{-}}$ 7,7-Cl($\mathrm{Ph}_{2} \mathrm{P}$-ortho- $\mathrm{C}_{6} \mathrm{H}_{4}$)-isonido-7-IrB $\mathbf{9 H}_{5} \mathbf{- 1 0}$-. $\mathrm{CH}_{\mathbf{2}} \mathrm{Cl}_{\mathbf{2}}$

By Jonathan Bould*
22 Parkland Drive, Leeds LS6 4PH, England
PaUl Brint
Department of Chemistry, University College, Cork, Eire
and John D. Kennedy and Mark Thornton-Pett
School of Chemistry, University of Leeds, Leeds LS2 9JT, England

(Received 10 July 1989; accepted 11 September 1989)

Abstract

Chloro-7,10- μ-(ortho-diphenylphosphino-phenyl- P, C)-3-ethoxy-4,9-bis(triphenylphosphino)-7-irida-isonido-decaborane(5) dichloromethane solvate, $\mathrm{C}_{56} \mathrm{H}_{54} \mathrm{~B}_{9} \mathrm{ClIrOP}_{3} . \mathrm{CH}_{2} \mathrm{Cl}_{2}, \quad M_{r}=1245 \cdot 87$, monoclinic, $\quad P 2_{1} / n, \quad a=19.543$ (3), $\quad b=13.199$ (3), $c=23.258$ (3) $\AA, \beta=107.93$ (1) ${ }^{\circ}, V=5708 \AA^{3}, Z=$ $4, D_{x}=1.45 \mathrm{Mg} \mathrm{m}^{-3}, \lambda(\mathrm{Mo} K \alpha)=0.71069 \AA, \mu=$ $2.480 \mathrm{~mm}^{-1}, F(000)=2496$, room temperature, $R=$ $0.0349,5954$ unique reflections with $F>4.0 \sigma(F)$.

[^1]0108-2701/90/061010-04\$03.00

The IrB_{9} cluster structure is of the rare isonido ten-vertex geometry that is formally derived from an eleven-vertex closo geometry by removal of a fourconnected vertex.

Introduction. As part of our investigation of the chemical and thermolytic reactions of unsubstituted and phosphine-substituted nido-iridadecaboranes, we have determined the crystal and molecular structure of the title compound which was isolated in about 0.1% yield as the only identified metallaborane prod(c) 1990 International Union of Crystallography

[^0]: * Lists of structure factors, anisotropic thermal parameters, bond angles of the SbCl_{4} moieties and least-squares-planes data for the PT moieties have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52639 (26 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

[^1]: * To whom correspondence should be addressed.

